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Abstract. Using methods of conformal field theory, we conjecture an exact form for the
probability thatn distinct clusters span a large rectangle or open cylinder of aspect ratiok, in
the limit whenk is large.

The study of the structure of large clusters at the percolation threshold continues to pose
interesting problems whose solution sheds light on the nature of the critical state in general.
Recently, some attention has been paid toincipient spanning clusters(ISCs). These are
clusters which connect two disjoint segments of the boundary of a macroscopically large
region. Langlandset al [1] conjectured that the probability that at least one such cluster
exists (that is, that the segments are connected) is invariant under conformal transformations.
This statement was placed in the context of conformal field theory in [2], where an explicit
formula was given for this crossing probability. (For a review of the status of conformal
invariance in critical percolation, see [3].)

More recently, Aizenman [4] has considered, among other things, the probability that
there existn distinct ISCs connecting the two segments†. In the case of a rectangular region,
[0, kL] × [0, L], he has proved that the probabilityP(n, k, L) that the strip is traversed (in
the direction of lengthkL) by n independent clusters satisfies the bounds

A e−αn
2k 6 P(n, k, L) 6 e−α

′n2k (1)

whereα andα′ are (different) constants. Note that, on the basis of scale invariance at the
critical point,P(n, k, L) is expected to have a finite limit asL→∞.

In this letter we extend the arguments of [2] to determine the exact behaviour of the
scaling limit ofP for largek, namely that

lim
L→∞

lnP(n, k, L) ∼ − 2
3πn(n− 1

2)k (2)

ask→∞ for any n.
An analogous problem may be posed on a open-ended cylinder of circumferenceL and

lengthkL. In this case we find, forn > 2,

lim
L→∞

lnP(n, k, L) ∼ − 2
3π(n

2− 1
4)k. (3)

† One may distinguish the probability of exactlyn ISCs from that of at leastn. However, in the limits considered
in this note, these will turn out to be asymptotically the same.
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In passing, we note that, as observed by Aizenman [4], the form of the result in (2)
and (3) is not surprising, even though it contradicts what appears to have been a former
consensus that only one such cluster should exist which has only recently been challenged
and corrected by numerical evidence [5, 6]. Indeed, if one imagines dividing the rectangle
into two equal rectangles each of size [0, kL] × [0, L/2], and assumes that the dominant
event will be that of approximatelyn/2 clusters spanning each half, then, up to prefactors,

P(n, k, L) ∼ P((n/2), 2k, L/2)2. (4)

Together with the expected exponential dependence onkL at fixedL, this leads to the above
form. A similar argument may then be made for the cylindrical geometry.

Our argument for the exact coefficients in (2) and (3) is based on the well known
mapping of bond percolation to theq → 1 limit of the q-state Potts model, and the
understanding of the critical theory of this model through conformal field theory. In the
Potts model, spinssi are placed at the sitesi of a lattice, each taking one ofq possible
states. The partition function has the form Tr

∏
ij (1−p+pδsisj ), where the product is over

all links of the lattice. This may be expanded in powers ofp/(1− p) so that each term
corresponds to a particular realization of bond percolation, weighted by a factor ofq for
each connected cluster. The limitq → 1 then weights these as in percolation, but, as will
be seen, it is also often helpful to consider first the case of more generalq.

In the rectangular geometry described above, it is useful to express things in terms of
the transfer matrix e−Ĥ (L) for a strip of widthL. The partition function for the Potts model
with particular boundary conditions at either end of a strip of finite lengthkL then has the
form

〈A|e−kLĤ (L)|A〉 (5)

where |A〉 is a boundary statecorresponding to the boundary conditions chosen. The
symmetry of the Potts model ensures that the degenerate subspaces of eigenstates ofĤ (L)

may be chosen to transform according to irreducible representations of the permutation group
Sq of q objects. Conformal field theory also asserts that, in the scaling limit, the states in
the low-lying spectrum ofĤ (L) transform according to highest weight representations of
a Virasoro algebra, and their corresponding eigenvalues have the formπ(x + integer)/L,
wherex is the highest weight. Thus (5) may also be written∑

R

e−πxRk
∑
N

〈A|N〉〈N |A〉 e−πNk (6)

where the first sum is over highest weight representationsR, and the second over the
states|N〉 is each representation. (This notation is a little corrupt because there are in
general many states at levelN .)

The simplest non-trivial irreducible representation ofSq has dimensionq − 1,
corresponding to a vector(ϕ1, . . . , ϕq) with

∑q

a=1 ϕa = 0. An example is the Potts order
parameterϕa = δsi ,a − q−1. Out of this, other representations may be built by taking
direct products. For example symmetric tensorsϕab with a 6= b and

∑
a ϕab = 0 give

a representation of dimension(q − 1)(q − 2)/2. In general, we may construct tensors
ϕab... with n components, none of whose indices are equal. Let us denote byRn the
Virasoro representation which also carries this representation ofSq and which has the
smallest weightxR. Denote this weight byxn.

Suppose now that we are interested in those configurations in which at leastn distinct
ISCs connect the two ends of the strip. In that case it is possible to colour these clusters
with n different colours of the Potts model, and therefore the states which propagate along
the strip must carry at leastn different colours. If there are fewer thann ISCs, it is not
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possible to make such an assignment. In the limit of largek, then the partition sum in
(5) will be dominated by those state(s) transforming according to representationsRn′ with
n′ > n. As we shall argue, the highest weightsxn′ are monotonically increasing inn′. Thus
the states withn′ = n dominate the sum.

What is the value ofxn? Forn = 1 the answer is known, since it corresponds to the
scaling dimension of the Potts order parameter near the boundary of a semi-infinite system.
It was conjectured in [7] that this corresponds to the operator(1, 3) in the Kac classification
[8, 9], giving, for generalq, x1 = (m − 1)/(m + 1), whereq = 4 cos2(π/(m + 1)), and
x1 = 1

3 for q = 1. This conjecture agrees with the known exact result forq = 2 and
numerical work forq = 3 andq = 1. Its correctness is also born out by the numerical
success of the crossing formula of [2]. We now further conjecture that the representations
Rn correspond to(1, 2n+ 1) in the Kac classification. This is based on the fusion rules for
these representations. Observe that the composition law for theSq representations under
consideration is isomorphic to that for addition of spinn in SU(2), which in turn is the
same as the fusion rules [8] for the Kac representations(1, 2n+1) in conformal field theory
(in non-minimal models corresponding to generic values ofq). Thus, for example, insertion
of two order parametersϕa andϕb near the end of the strip will, in general, give rise to
propagating states corresponding to the tensor representationϕab (whena 6= b), the vector
representation (whena = b) and the identity representation. Since these last two correspond
to (1, 3) and (1, 1), respectively, we may identify the first with(1, 5). This argument may
be generalized straightforwardly to higher values ofn. Then, according to the Kac formula
[8], the highest weight of the(1, 2n + 1) representation isxn = n(mn − 1)/(m + 1), or
xn = n(2n − 1)/3 for q = 1. This, combined with (6), gives the first result (2), valid as
k→∞ at fixedn.

The largen behaviour of (2) may also be derived directly from Coulomb gas arguments
[10]. In this approach, the configurations of the critical cluster model are mapped onto those
of densely packed loops on the surrounding lattice. Each loop carries a factorq1/2, which
may be traded for local weights by considering each loop as corresponding to two oriented
loops with vertex weights e±iχ according to whether they turn to the right or left at a given
site, and settingq1/2 = 2 cos 4χ . These loop configurations are then mapped onto those of
a local height model on the dual lattice, with heightsφ(r) ∈ (π/2)Z, and the rule that the
height difference between neighbouring dual sites is±π/2 according to the orientation of
the corresponding dual bond. This in turn is supposed to renormalize onto a Gaussian model
with reduced Hamiltonian(g/4π)

∫
(∇φ)2 d2r, whereg = 2(2− 8χ/π), and 26 g 6 4.

Free boundary conditions on the original Potts model correspond to Dirichlet conditions
φ = constant in the height model.

In the strip geometry, the total charge, that is the number of left-oriented minus
right-oriented loops, is conserved along the strip. Consider the configurations where
this charge is 2n. These correspond to cluster configurations where at leastn distinct
clusters traverse the strip, as illustrated in figure 1. In the height model this means
that the difference in the heights between the upper and lower edges is fixed to be
2n(π/2) = nπ . Neglecting fluctuations, the energy of such a configuration is simply
(g/4π)(nπ/L)2 · kL · L = (gπn2/4)k. Inserting theq = 1 valueg = 8

3 gives the leading
term in the result (2) for lnP . This calculation works only for largen because (a) the
mapping to the Gaussian model is valid only in the bulk and not close to the boundary,
and only for largen are most of the loops far from the boundary; and (b) because the
fluctuations are expected to give anO(1) contribution.

A similar argument, in this case yielding the exact result at largek, may be applied to
the cylindrical geometry, where there are periodic boundary conditions around the strip.
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Figure 1. The configuration in which two clusters span the strip. The hulls of these correspond
to a loop configuration with charge 4. Other possible non-spanning clusters are not shown.

Once again, the loop configurations with charge 2n correspond to at leastn clusters
connecting the ends of the cylinders. Writingφ = nπv/L+ φ′, wherev is the coordinate
around the cylinder andφ′ satisfies periodic boundary conditions, the energy functional
is (gπn2/4)k + (g/4π) ∫ (∇φ′)2 d2r, where the first term is identical to that for the strip
with free boundaries. The integral over the fluctuating part then gives a contribution [11]
(πcG/6)k to lnP , wherecG = 1 is the central charge of the free scalar fieldφ′. Putting
these together and settingg = 8

3 then gives the result in (3). Note that this is correct only
at q = 1: in general it should be normalized by the partition function. The finite-size
corrections to this have the above form, withc = 0 at q = 1. This comes about because
the Gaussian resultcG = 1 is reduced by the effects of loops which can wind around the
cylinder [12]. These are forbidden when other loops already extend along the cylinder, so
that no similar reduction occurs in this case.

In general, the behaviour in (3) should be of the form 2πx(b)n k, wherex(b)n is a bulk
exponent [13]. In fact, these exponents are the so-calledmulti-hull scaling dimensions
discussed by Saleur and Duplantier [14]. In the plane, these determine the power-law decay
∼|r1− r2|−2x(b)n of the probability that two pointsr1 andr2 lie in the vicinity of the external
boundaries, or hulls, ofn distinct clusters. These are computed in the loop gas in terms
of configurations with 2n oriented lines running fromr1 to r2, which is precisely what we
have argued above determines lnP for large k. Our result in (3) agrees with that of [14]
for these exponents.

As indicated, (3) does not hold forn = 1. This is because a single cluster which
connects the ends of the cylinder is also allowed to wrap around it: this is clearly not
allowed for n > 2. For n = 1 the equivalence to the hull exponents no longer holds.
Instead, we expect for largek thatP(1, k, L) is asymptotically equal to the probability that
the two ends are connected (by any number of clusters) and it should behave as exp(−2πx̃k),
where x̃ = 5

48 is the usual magnetic scaling dimension of theq = 1 Potts model, which
gives the probability∼|r1 − r2|−2x̃ that pointsr1 and r2 in the plane are connected. Thus
for n = 1 on the cylinder, (3) is replaced by

lnP(1, k, L) ∼ −(5π/24)k. (7)

However, the result in (3) withn = 1 does have a physical meaning: it is the asymptotic
probability that the two ends of the cylinder are connected by a cluster which does not
also wrap around the cylinder. As expected, this is much smaller than the unrestricted
probability.
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Finally, we discuss whether it is possible to computeP(n, k, L) for non-asymptotic
values ofk andn, in the scaling limitL→∞. This corresponds to a generalization of the
calculation of [2], and first involves identifying suitable boundary conditions corresponding
to the states|A〉. It is not difficult to see that these states should be suitable linear
combinations of states corresponding to boundary conditions in which each Potts spin is
constrained to lie in a subset ofn states out of the possibleq. Let us denote the boundary
state in which each spin is constrained to take the valuesa or b or . . . (where all thea, b, . . .
are different) by|ab . . .〉. ThenP(n, k, L) ∝ 〈An|e−kLĤ (L)|An〉, where, for example,

|A1〉 = |a〉 − |b〉 (8)

|A2〉 = |ab〉 + |cd〉 − |ac〉 − |bd〉 (9)

and so on. It may be seen that that these states do indeed transform according to the
advertized representations ofSq , and so will couple precisely to the representationsRn, and
this will be the dominant coupling in the limitk→∞. However, in order to determine the
dependence ofP(n, k, L) for finite k, in analogy with the argument of [2], it is necessary to
determine the four-point function of boundary condition changing operators which connect
the above boundary conditions to the free boundary conditions along the other edges. Unlike
the case of [2] it does not appear that these operators, forn > 1, correspond to simple
Kac representations. However, it may still be possible to conjecture a suitable differential
equation or an integral representation for this function, as was done recently by Watts [15]
in the case of the probability of a simultaneous left-right and up-down crossing of the
rectangle. A simpler case to consider might be that of clusters which span a cylinder of
finite length. It is known that in this case the appropriate matrix elements may be expressed
as a linear combination of Virasoro characters [16].

We note that the simple argument given above in (4) (and the rigorous arguments of
Aizenman [4]) provide a simple physical reason why the scaling dimensions of composite
operators such as those discussed should increase liken2 in two dimensions. The
generalization of Aizenman’s argument tod dimensions suggests that the rate of increase
of − lnP(n, k, L) is like nd/(d−1). However, ford > 2 this quantity is no longer related to
scaling dimensions by conformal invariance.

Our conjecture that the relevant scaling dimensions in (2) are the(1, 2n+ 1) operators
in the Kac classification is equivalent to a result of Saleur and Bauer [17] for the spin-
n operators in the Bethe ansatz solution of the equivalent vertex model. These are the
‘boundary multi-hull’ operators.

After this work was completed, we saw the paper of Shchur and Kosyakov [18], which
reports Monte Carlo measurements ofP(n, 1, L) for n = 2 andn = 3 on lattices withL
up to 64. Their quoted results agree well with our predictions in (2, 3), even though the
value of k = 1 is not large. In particular, the ratios of− lnP(n, 1, L) between the cases
of open boundaries (2) and periodic boundary conditions (3) is predicted to be4

5 = 0.8 for
n = 2 and 6

7 ≈ 0.857 for n = 3. The corresponding values quoted in [18] are 0.808(10)
and 0.851(20). This close agreement with the asymptotic form may be explained by the
observation that the higher eigenstates ofĤ in (5) give corrections of order e−2πk. For
n = 1, using (7) we find a ratio85 = 1.6, to be compared with the value 1.5348 extracted
from the resultP(1, 1, L) ≈ 0.636 65(8) of Hovi and Aharony [19] for the cylinder, and
the exact result of 0.5 for the square.

The author thanks M Aizenman, H Saleur and L N Shchur for useful correspondence
and discussions. This work was completed while the author was visiting the Institute for
Theoretical Physics, Santa Barbara, and was supported in part by the Engineering and
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